Bottom-Up Colloidal Crystal Assembly with a Twist

نویسندگان

  • Nathan A. Mahynski
  • Lorenzo Rovigatti
  • Christos N. Likos
  • Athanassios Z. Panagiotopoulos
چکیده

Globally ordered colloidal crystal lattices have broad utility in a wide range of optical and catalytic devices, for example, as photonic band gap materials. However, the self-assembly of stereospecific structures is often confounded by polymorphism. Small free-energy differences often characterize ensembles of different structures, making it difficult to produce a single morphology at will. Current techniques to handle this problem adopt one of two approaches: that of the "top-down" or "bottom-up" methodology, whereby structures are engineered starting from the largest or smallest relevant length scales, respectively. However, recently, a third approach for directing high fidelity assembly of colloidal crystals has been suggested which relies on the introduction of polymer cosolutes into the crystal phase [Mahynski, N.; Panagiotopoulos, A. Z.; Meng, D.; Kumar, S. K. Nat. Commun. 2014, 5, 4472]. By tuning the polymer's morphology to interact uniquely with the void symmetry of a single desired crystal, the entropy loss associated with polymer confinement has been shown to strongly bias the formation of that phase. However, previously, this approach has only been demonstrated in the limiting case of close-packed crystals. Here, we show how this approach may be generalized and extended to complex open crystals, illustrating the utility of this "structure-directing agent" paradigm in engineering the nanoscale structure of ordered colloidal materials. The high degree of transferability of this paradigm's basic principles between relatively simple crystals and more complex ones suggests that this represents a valuable addition to presently known self-assembly techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterning hierarchy in direct and inverse opal crystals.

Biological strategies for bottom-up synthesis of inorganic crystalline and amorphous materials within topographic templates have recently become an attractive approach for fabricating complex synthetic structures. Inspired by these strategies, herein the synthesis of multi-layered, hierarchical inverse colloidal crystal films formed directly on topographically patterned substrates via evaporati...

متن کامل

Colloids with anisotropic interactions

The phase behavior of nanoand colloidal particles becomes increasingly complex as the particle shape and interactions are anisotropic. In addition, softness, deformability and other complicated interaction potentials e.g multipolar moments contribute to the complexity. As a result of the numerous variables that are often involved, the study of their collective behavior, such as the formation of...

متن کامل

Combining Bottom-Up Self-Assembly with Top-Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order.

Colloidal particles can assemble into ordered crystals, creating periodically structured materials at the nanoscale without relying on expensive equipment. The combination of small size and high order leads to strong interaction with visible light, which induces macroscopic, iridescent structural coloration. To increase the complexity and functionality, it is important to control the organizati...

متن کامل

Bottom-Up Assembly and Applications of Photonic Materials

The assembly of colloidal building-blocks is an efficient, inexpensive and flexible approach for the fabrication of a wide variety of photonic materials with designed shapes and large areas. In this review, the various assembly routes to the fabrication of colloidal crystals and their post-assembly modifications to the production of photonic materials are first described. Then, the emerging app...

متن کامل

Diamondoids and DNA Nanotechnologies

Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016